Viscosity Projection Algorithms for Pseudocontractive Mappings in Hilbert Spaces
نویسندگان
چکیده
منابع مشابه
Viscosity approximation methods for pseudocontractive mappings in Banach spaces
Strong convergence of implicit viscosity approximation methods for pseudocontractive mappings in Banach spaces Lu-Chuan Ceng a b , Adrian Petruşel c , Mu-Ming Wong d & Su-Jane Yu e a Department of Mathematics, Shanghai Normal University, Shanghai 200234, China b Scientific Computing Key Laboratory of Shanghai Universities, Shanghai, China c Department of Applied Mathematics, Babeş-Bolyai Univer...
متن کاملStrong convergence of shrinking projection methods for a family of pseudocontractive mappings in Hilbert spaces
The shrinking projection method has gained more and more attention as a powerful tool for the approximation of a fixed point of nonlinear mappings. In this paper, we introduce a new shrinking projection method for the approximation of fixed points of a family of pseudocontractive mappings in a Hilbert space. Using this method, we also deal with the problem of finding a common zero of a family o...
متن کاملViscosity Approximation Methods for Nonexpansive Nonself-Mappings in Hilbert Spaces
Viscosity approximation methods for nonexpansive nonself-mappings are studied. Let C be a nonempty closed convex subset of Hilbert space H , P a metric projection of H onto C and let T be a nonexpansive nonself-mapping from C into H . For a contraction f on C and {tn} ⊆ (0,1), let xn be the unique fixed point of the contraction x → tn f (x) + (1− tn)(1/n) ∑n j=1(PT) x. Consider also the iterati...
متن کاملViscosity approximation methods for W-mappings in Hilbert space
We suggest a explicit viscosity iterative algorithm for nding a common elementof the set of common xed points for W-mappings which solves somevariational inequality. Also, we prove a strong convergence theorem with somecontrol conditions. Finally, we apply our results to solve the equilibrium problems.Finally, examples and numerical results are also given.
متن کاملViscosity Approximation of Common Fixed Points for L-Lipschitzian Semigroup of Pseudocontractive Mappings in Banach Spaces
We study the strong convergence of two kinds of viscosity iteration processes for approximating common fixed points of the pseudocontractive semigroup in uniformly convex Banach spaces with uniformly Gâteaux differential norms. As special cases, we get the strong convergence of the implicit viscosity iteration process for approximating common fixed points of the nonexpansive semigroup in Banach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/791209